论文标题

Nordhaus-gaddum的不平等现象,用于图中连接的诱导子图的数量

Nordhaus-Gaddum inequalities for the number of connected induced subgraphs in graphs

论文作者

Andriantiana, Eric Ould Dadah, Dossou-Olory, Audace Amen Vioutou

论文摘要

令$η(g)$为图$ g $中连接的感应子图的数量,$ \ overline {g} $的补充$ g $。我们证明$η(g)+η(\ overline {g})$在所有$ n $ vertex图中均为最低,并且仅当$ g $在四个顶点上没有诱导的路径。由于$ n $ vertex star $ s_n $具有最高度$ n-1 $是直径$ 2 $的独特树,$η(s_n)+η(\ overline {s_n})$在所有$ n $ n $ vertex中是最低的,而最大的序列才能通过其序列来实现,而该序列是$(\ lce lce lce n lceil lceil lceil lceil l r r r r r r。 n/2 \ rfloor,1,\ dots,1)$。此外,我们证明,订单$ n \ geq 5 $的每个图$ g $,以及最大$η(g)+η(\ overline {g})$最多必须具有直径为$ 3 $,也没有切割的顶点和$ \+++++++++++edline {g} $的属性。在两个具有相同顺序的树和图的情况下,我们发现,如果$η(g)$是最大的,则$η(g)+η(\ edimelline {g})$是最低的。 作为我们结果的推论,我们表征了给定订单的唯一连接图$ g $ $ 1 $ $ 1 $的顶点,而独特的unicyclic(连接且只有一个周期)图$ g $的给定订单的$ g $,以最小化$η(g)+η(\ edline {g})$。

Let $η(G)$ be the number of connected induced subgraphs in a graph $G$, and $\overline{G}$ the complement of $G$. We prove that $η(G)+η(\overline{G})$ is minimum, among all $n$-vertex graphs, if and only if $G$ has no induced path on four vertices. Since the $n$-vertex star $S_n$ with maximum degree $n-1$ is the unique tree of diameter $2$, $η(S_n)+η(\overline{S_n})$ is minimum among all $n$-vertex trees, while the maximum is shown to be achieved only by the tree whose degree sequence is $(\lceil n/2\rceil,\lfloor n/2\rfloor,1,\dots,1)$. Furthermore, we prove that every graph $G$ of order $n\geq 5$ and with maximum $η(G)+η(\overline{G})$ must have diameter at most $3$, no cut vertex and the property that $\overline{G}$ is also connected. In both cases of trees and graphs that have the same order, we find that if $η(G)$ is maximum then $η(G)+η(\overline{G})$ is minimum. As corollaries to our results, we characterise the unique connected graph $G$ of given order and number of vertices of degree $1$, and the unique unicyclic (connected and has only one cycle) graphs $G$ of a given order that minimises $η(G)+η(\overline{G})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源