论文标题

严格的伪convex域中的耐强 - 贝贝尔空间的建设性描述,平滑度最低

Constructive description of Hardy-Sobolev spaces in strictly pseudoconvex domains with minimal smoothness

论文作者

Rotkevich, Aleksandr

论文摘要

令$ω\ subset \ mathbb {c}^n $是一个严格的pseudoconvex runge域,具有$ c^2 $ - s-smooth定义功能,$ l \ in \ mathbb {n},$ $ $ $ p \ in(in(1,\ infty)。如果存在多项式上的顺序$ p_n $ $ n $,以便$ \ sum \ limits_ {k = 1}^{\ infty}^{\ infty} 2^{2lk} \ left \ left \ lvert f(z)-p_p_ {z)-p_ {2^k}(z)\ rvert \ rvert \ rvert \ rvert \ rvert \ rvert \ rvert \ rvert \ rvert^2 p($)

Let $Ω\subset\mathbb{C}^n$ be a strictly pseudoconvex Runge domain with $C^2$-smooth defining function, $l\in\mathbb{N},$ $p\in(1,\infty).$ We prove that the holomorphic function $f$ has derivatives of order $l$ in $H^p(Ω)$ if and only if there exists a sequence on polynomials $P_n$ of degree $n$ such that $\sum\limits_{k=1}^{\infty}2^{2lk}\left\lvert f(z)-P_{2^k}(z) \right\rvert^2\in L^p(\partialΩ).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源