论文标题
来自草图的深层脸部图像
Deep Generation of Face Images from Sketches
论文作者
论文摘要
最近的深层图像到图像翻译技术允许从徒手草图中快速生成面部图像。但是,现有的解决方案倾向于对草图过高,因此需要专业的草图甚至边缘地图作为输入。为了解决这个问题,我们的关键想法是隐式对合理面部图像的形状空间进行模拟,并在此空间中合成面部图像以近似输入草图。我们采用局部到全球的方法。我们首先学习关键面部成分的功能嵌入,然后将输入草图的相应部分推向由面部成分样本的特征向量定义的基础组件歧管。我们还提出了另一个深层神经网络,以从嵌入式组件特征到具有多通道特征图的逼真图像作为中间结果,以改善信息流量。我们的方法基本上将输入草图用作软约束,因此即使从粗糙和/或不完整的草图中也能够产生高质量的面部图像。即使对于非艺术家,我们的工具也易于使用,同时仍支持对形状细节的细粒度控制。定性评估和定量评估都表明,我们的系统与现有解决方案的卓越生成能力。用户研究确认了我们系统的可用性和表现力。
Recent deep image-to-image translation techniques allow fast generation of face images from freehand sketches. However, existing solutions tend to overfit to sketches, thus requiring professional sketches or even edge maps as input. To address this issue, our key idea is to implicitly model the shape space of plausible face images and synthesize a face image in this space to approximate an input sketch. We take a local-to-global approach. We first learn feature embeddings of key face components, and push corresponding parts of input sketches towards underlying component manifolds defined by the feature vectors of face component samples. We also propose another deep neural network to learn the mapping from the embedded component features to realistic images with multi-channel feature maps as intermediate results to improve the information flow. Our method essentially uses input sketches as soft constraints and is thus able to produce high-quality face images even from rough and/or incomplete sketches. Our tool is easy to use even for non-artists, while still supporting fine-grained control of shape details. Both qualitative and quantitative evaluations show the superior generation ability of our system to existing and alternative solutions. The usability and expressiveness of our system are confirmed by a user study.