论文标题

通过问题回答探测预测代理中的新兴语义

Probing Emergent Semantics in Predictive Agents via Question Answering

论文作者

Das, Abhishek, Carnevale, Federico, Merzic, Hamza, Rimell, Laura, Schneider, Rosalia, Abramson, Josh, Hung, Alden, Ahuja, Arun, Clark, Stephen, Wayne, Gregory, Hill, Felix

论文摘要

最近的工作表明,预测建模如何能够赋予对周围环境的丰富了解,从而提高其在复杂环境中的作用。我们提出提问作为一般范式来解码和理解这种代理的表示形式,并将我们的方法应用于最近的两种预测建模 - 行动 - 条件 - 条件CPC(Guo等,2018)和Simc​​ore(Gregor等人,2019年,2019年)。在培训这些预测目标的训练中,在视觉上富裕的3D环境中具有各种对象,颜色,形状和空间配置,我们使用合成(英语)问题探究了它们的内部状态表示,而无需将提问解码器从问题转向代理的梯度。当以这种方式进行探测时,不同代理的性能表明他们学会了从其物理环境中编码有关对象,属性和空间关系的事实,看似组成的信息。我们的方法是直观的,即人可以轻松地解释模型的响应,而不是检查连续向量,而模型不合时宜,即适用于任何建模方法。通过揭示代理在学习时获得的对象,数量,属性和关系的隐性知识,问题条件剂探测可以刺激更强的预测学习目标的设计和开发。

Recent work has shown how predictive modeling can endow agents with rich knowledge of their surroundings, improving their ability to act in complex environments. We propose question-answering as a general paradigm to decode and understand the representations that such agents develop, applying our method to two recent approaches to predictive modeling -action-conditional CPC (Guo et al., 2018) and SimCore (Gregor et al., 2019). After training agents with these predictive objectives in a visually-rich, 3D environment with an assortment of objects, colors, shapes, and spatial configurations, we probe their internal state representations with synthetic (English) questions, without backpropagating gradients from the question-answering decoder into the agent. The performance of different agents when probed this way reveals that they learn to encode factual, and seemingly compositional, information about objects, properties and spatial relations from their physical environment. Our approach is intuitive, i.e. humans can easily interpret responses of the model as opposed to inspecting continuous vectors, and model-agnostic, i.e. applicable to any modeling approach. By revealing the implicit knowledge of objects, quantities, properties and relations acquired by agents as they learn, question-conditional agent probing can stimulate the design and development of stronger predictive learning objectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源