论文标题
基于黑森的量子控制优化
Hessian-based optimization of constrained quantum control
论文作者
论文摘要
量子系统的有效优化是达到容错阈值的必要条件。优化模拟量子动力学的标准工具是基于梯度的\ textsc {Grape}算法,该算法已成功应用于量子物理的各种不同分支。在这项工作中,我们得出并实施了精确的$ 2^{\ mathrm {nd}} $顺序的连贯动态分析衍生物,并与使用大约$ 2^{\ mathrm {nd}} $ 2^{\ mathrm {nd}} $ orders $ 2^{\ textsc {bfgs}进行优化的标准相比,进行了改进。我们证明了在电路\ textsc {qed}系统上在不同栅极持续时间内的电路\ textsc {qed}系统上约束统一门合成的最佳和平均值的性能改进。
Efficient optimization of quantum systems is a necessity for reaching fault tolerant thresholds. A standard tool for optimizing simulated quantum dynamics is the gradient-based \textsc{grape} algorithm, which has been successfully applied in a wide range of different branches of quantum physics. In this work, we derive and implement exact $2^{\mathrm{nd}}$ order analytical derivatives of the coherent dynamics and find improvements compared to the standard of optimizing with the approximate $2^{\mathrm{nd}}$ order \textsc{bfgs}. We demonstrate performance improvements for both the best and average errors of constrained unitary gate synthesis on a circuit-\textsc{qed} system over a broad range of different gate durations.