论文标题
二进制中的核心爆发超新星作为银河系恒星的起源
Core-Collapse Supernovae in Binaries as the Origin of Galactic Hyper-Runaway Stars
论文作者
论文摘要
几颗恒星检测到在速度附近或超过银河系逃逸速度的速度上移动的可能起源于银河系圆盘。我们定量地探索“二进制超新星情景”假设,其中这些“超跑”恒星在其近距离的大型二元伴侣经历核心溢出的超新星时被弹出,并且二元二进制被干扰。我们执行了广泛的二元种群综合模拟套件,以不断发展巨大的系统,以确定最大的假设和参数,这些假设和参数最大,从而影响快恒星的弹出率。在量身定制的弹出快速恒星的模拟中,我们发现最有可能的超跑星祖细胞二进制二进制由大量($ \ sim $$ 30 \,\ mathrm {m _ {\ odot}} $组成,主要是主要的$ \ lyssim $ $ 1天,核心倒塌阶段之后。由初级形成的黑洞残留物必须接收出生踢$ \ gtrsim $ 1000 $ \ mathrm {km \ s^{ - 1}} $,以破坏二进制并以很大的速度弹出伴侣。我们将这些模拟中产生的快速恒星与早期型银河系Hyper-Runaway明星候选人的当代人口普查进行了比较。我们发现,只有当与后折叠后遗物残留踢的强度相关的二进制二进制进化参数不足时,这些稀有物体才能以足够的数量产生,并且可以将共同的信封效率调整为当前不支持的值(但未排除)。我们讨论可能限制这些推定祖细胞系统存在的观察意义。
Several stars detected moving at velocities near to or exceeding the Galactic escape speed likely originated in the Milky Way disc. We quantitatively explore the `binary supernova scenario' hypothesis, wherein these `hyper-runaway' stars are ejected at large peculiar velocities when their close, massive binary companions undergo a core-collapse supernova and the binary is disrupted. We perform an extensive suite of binary population synthesis simulations evolving massive systems to determine the assumptions and parameters which most impact the ejection rate of fast stars. In a simulation tailored to eject fast stars, we find the most likely hyper-runaway star progenitor binary is composed of a massive ($\sim$$30\,\mathrm{M_{\odot}}$) primary and a $\sim$$3-4\,\mathrm{M_{\odot}}$ companion on an orbital period that shrinks to $\lesssim$1 day prior to the core collapse following a common envelope phase. The black hole remnant formed from the primary must receive a natal kick $\gtrsim$1000 $\mathrm{km\ s^{-1}}$ to disrupt the binary and eject the companion at a large velocity. We compare the fast stars produced in these simulations to a contemporary census of early-type Milky Way hyper-runaway star candidates. We find that these rare objects may be produced in sufficient number only when poorly-constrained binary evolution parameters related to the strength of post-core collapse remnant natal kicks and common envelope efficiency are adjusted to values currently unsupported -- but not excluded -- by the literature. We discuss observational implications that may constrain the existence of these putative progenitor systems.