论文标题

探索在不遭受驱动区域中的对象检测的热图像以进行自动驾驶

Exploring Thermal Images for Object Detection in Underexposure Regions for Autonomous Driving

论文作者

Munir, Farzeen, Azam, Shoaib, Rafique, Muhammd Aasim, Sheri, Ahmad Muqeem, Jeon, Moongu, Pedrycz, Witold

论文摘要

不受欢迎的区域对于建立对周围环境的完整感知至关重要,以进行安全的自主驾驶。热摄像机的可用性为探索其他光学传感器捕获可解释的信号缺乏的区域提供了必不可少的替代方案。热摄像机使用红外光谱中的物体发出的热差捕获图像,而热图像中的对象检测对于在有挑战性的条件下自动驾驶有效。尽管可见光谱域成像中的对象检测已经成熟,但热对象检测缺乏有效性。一个重大的挑战是,对于SOTA人工智能技术,热域的标记数据稀缺。这项工作提出了一个域适应框架,该框架采用样式转移技术从可见频谱图像转移到热图像。该框架使用生成性对抗网络(GAN)将低级特征从可见的光谱域通过样式一致性传递到热域。当使用公开可用的热图像数据集(Flir ADAS和KAIST多光谱)中使用样式的图像时,从改进的结果中可以看出,提出的对象检测方法在热图像中提出的功效。

Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving. The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals. A thermal camera captures an image using the heat difference emitted by objects in the infrared spectrum, and object detection in thermal images becomes effective for autonomous driving in challenging conditions. Although object detection in the visible spectrum domain imaging has matured, thermal object detection lacks effectiveness. A significant challenge is scarcity of labeled data for the thermal domain which is desiderata for SOTA artificial intelligence techniques. This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images. The framework uses a generative adversarial network (GAN) to transfer the low-level features from the visible spectrum domain to the thermal domain through style consistency. The efficacy of the proposed method of object detection in thermal images is evident from the improved results when used styled images from publicly available thermal image datasets (FLIR ADAS and KAIST Multi-Spectral).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源