论文标题

弹性超均匀的单量子点的空间掩埋阵列,用于片上可伸缩量子光学电路

Buried spatially-regular array of spectrally ultra-uniform single quantum dots for on-chip scalable quantum optical circuits

论文作者

Zhang, Jiefei, Chattaraj, Swarnabha, Huang, Qi, Jordao, Lucas, Lu, Siyuan, Madhukar, Anupam

论文摘要

长期存在的障碍是实现高度寻求的片上整体状态量子光学电路,缺乏一个启动平台,该平台包括埋藏的(受保护的)可扩展的空间序列和频谱均匀的单个单个光子源(SPSS)的频谱均匀阵列。在本文中,我们报告了基于单个光子发射纯度> 99.5%且均匀性<2nm的单个量子点(SQD)的第一个实现。这种SQD合成方法在材料组合方面具有丰富的灵活性,因此可以涵盖从长到中边缘到近边缘到可见的和紫外线的发射波长状态。 SQD埋葬的阵列自然而然地用于制造量子光电电路,该量子电路采用了良好的光子2D水晶平台或使用MIE般的集体共鸣,该集合基于全型构建元件设计,旨在用于定向发射和操纵水平平面架构中的发射光子构造的旋转循环。提出了基于有限元方法的基于MIE谐振的发射光的操纵的模拟,显示出具有〜20nm的较大光谱带宽的光子的同时多功能操纵实现的实现,从而可以缓解光谱和模式匹配。我们在这里提出的我们的合并实验和模拟发现为制造和研究芯片量子光学电路开辟了途径。

A long standing obstacle to realizing highly sought on-chip monolithic solid state quantum optical circuits has been the lack of a starting platform comprising buried (protected) scalable spatially ordered and spectrally uniform arrays of on-demand single photon sources (SPSs). In this paper we report the first realization of such SPS arrays based upon a class of single quantum dots (SQDs) with single photon emission purity > 99.5% and uniformity < 2nm. Such SQD synthesis approach offers rich flexibility in material combinations and thus can cover the emission wavelength regime from long- to mid- to near-infrared to the visible and ultraviolet. The buried array of SQDs naturally lend themselves to the fabrication of quantum optical circuits employing either the well-developed photonic 2D crystal platform or the use of Mie-like collective resonance of all-dielectric building block based metastructures designed for directed emission and manipulation of the emitted photons in the horizontal planar architecture inherent to on-chip optical circuits. Finite element method-based simulations of the Mie-resonance based manipulation of the emitted light are presented showing achievement of simultaneous multifunctional manipulation of photons with large spectral bandwidth of ~ 20nm that eases spectral and mode matching. Our combined experimental and simulation findings presented here open the pathway for fabrication and study of on-chip quantum optical circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源