论文标题
物理模型引导的在线贝叶斯框架,用于扩展范围电动送货车辆的能源管理
A Physics Model-Guided Online Bayesian Framework for Energy Management of Extended Range Electric Delivery Vehicles
论文作者
论文摘要
通过基于优化的能源管理策略(EMS)增加了混合动力汽车(HEV)和扩展电动汽车(EREV)的燃油经济性一直是运输领域的一个积极研究领域。但是,很难将基于优化的EMS应用于当前使用的EREV,因为对未来旅行的了解不足,并且因为对于大规模部署而言,此类方法在计算上非常昂贵。结果,大多数过去的研究已在标准驾驶周期或过去的实际驾驶周期中记录的高分辨率数据上进行了验证。本文改善了基于使用规则的EMS,该EMS用于配备双向车辆云连接的运输车队中。物理模型引导的在线贝叶斯框架将在大量用于最后一英里套件交付的EREV的驾驶样品中进行了验证和验证。该框架包括:数据库,预处理模块,车辆模型和在线贝叶斯算法模块。它使用历史0.2 Hz分辨率跳闸数据作为输入,并将更新的参数输出到车辆上的发动机控制逻辑,以减少下一次旅行的燃油消耗。这项工作的关键贡献是一个框架,它为减少使用中的EREV提供了立即解决方案。在实际路线上运行的现实世界EREVS送货车上也证明了该框架。结果表明,经过155次实际送货旅行的测试车辆平均燃油使用量减少了12.8%。提出的框架可扩展到其他EREV应用程序,包括乘用车,运输巴士和其他每天旅行相似的职业车辆。
Increasing the fuel economy of hybrid electric vehicles (HEVs) and extended range electric vehicles (EREVs) through optimization-based energy management strategies (EMS) has been an active research area in transportation. However, it is difficult to apply optimization-based EMS to current in-use EREVs because insufficient knowledge is known about future trips, and because such methods are computationally expensive for large-scale deployment. As a result, most past research has been validated on standard driving cycles or on recorded high-resolution data from past real driving cycles. This paper improves an in-use rule-based EMS that is used in a delivery vehicle fleet equipped with two-way vehicle-to-cloud connectivity. A physics model-guided online Bayesian framework is described and validated on large number of in-use driving samples of EREVs used for last-mile package delivery. The framework includes: a database, a preprocessing module, a vehicle model and an online Bayesian algorithm module. It uses historical 0.2 Hz resolution trip data as input and outputs an updated parameter to the engine control logic on the vehicle to reduce fuel consumption on the next trip. The key contribution of this work is a framework that provides an immediate solution for fuel use reduction of in-use EREVs. The framework was also demonstrated on real-world EREVs delivery vehicles operating on actual routes. The results show an average of 12.8% fuel use reduction among tested vehicles for 155 real delivery trips. The presented framework is extendable to other EREV applications including passenger vehicles, transit buses, and other vocational vehicles whose trips are similar day-to-day.