论文标题

使用基于深度学习的框架,在数字建筑平面图上发现符号

Symbol Spotting on Digital Architectural Floor Plans Using a Deep Learning-based Framework

论文作者

Rezvanifar, Alireza, Cote, Melissa, Albu, Alexandra Branzan

论文摘要

本文重点介绍了具有深度学习(DL)框架的现实世界数字建筑平面图的符号。传统的符号斑点方法无法解决图形符号可变性的语义挑战,即低阶符号相似性,这是在建筑平面图分析中尤为重要的问题。遮挡和混乱的存在,是现实世界计划的特征,以及从几乎微不足道到高度复杂的不同图形符号复杂性,也对现有的发现方法构成了挑战。在本文中,我们通过利用DL的最新进展并根据您的唯一外观(YOLO)体系结构来调整对象检测框架来解决上述所有问题。我们提出了一种基于瓷砖的培训策略,避免了与整个平面图,宽高比和数据扩展相比,与基于DL的对象检测网络有关的许多问题。现实世界平面图上的实验表明,即使在存在较重的遮挡和混乱的情况下,我们的方法成功地检测出具有低类相似性和可变图形复杂性的构建符号。公共SESYD数据集上的其他实验证实,我们提出的方法可以处理各种降解和噪声水平,并优于其他符号斑点方法。

This papers focuses on symbol spotting on real-world digital architectural floor plans with a deep learning (DL)-based framework. Traditional on-the-fly symbol spotting methods are unable to address the semantic challenge of graphical notation variability, i.e. low intra-class symbol similarity, an issue that is particularly important in architectural floor plan analysis. The presence of occlusion and clutter, characteristic of real-world plans, along with a varying graphical symbol complexity from almost trivial to highly complex, also pose challenges to existing spotting methods. In this paper, we address all of the above issues by leveraging recent advances in DL and adapting an object detection framework based on the You-Only-Look-Once (YOLO) architecture. We propose a training strategy based on tiles, avoiding many issues particular to DL-based object detection networks related to the relative small size of symbols compared to entire floor plans, aspect ratios, and data augmentation. Experiments on real-world floor plans demonstrate that our method successfully detects architectural symbols with low intra-class similarity and of variable graphical complexity, even in the presence of heavy occlusion and clutter. Additional experiments on the public SESYD dataset confirm that our proposed approach can deal with various degradation and noise levels and outperforms other symbol spotting methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源