论文标题
X射线准周期性振荡在晶状体 - 裂纹进动模型中-II。相对论铁K $α$线的变异性
X-ray quasi-periodic oscillations in Lense-Thirring precession model -- II. variability of relativistic iron K$α$ line
论文作者
论文摘要
在黑洞X射线二进制文件(BHXRBS)的积聚磁盘中重新处理X射线发射的产生频谱,具有特征性的Fe K $α$荧光线。从BHXRB中观察到强低频准周期振荡(QPO),QPO性能(例如相位lag)对倾斜角的依赖性表明,观察到的QPO可能与几何效应有关,例如,由于X射线源附近的X射线源,由于X射线源附近的黑孔,X射线源是黑色碎片造成的。在这里,在X射线源的透明裂隙进动的情况下,我们使用辐射转移的蒙特卡罗模拟来研究辐射/反射和所得的光谱特性,包括Fe K $α$线,作为进动阶段的函数(时间)。我们发现,反射分数,即,入射通量与磁盘的比率和无穷大处的直接通量与观察者的直接通量是通过进动阶段调节的,这取决于截断半径(即,截短磁盘模型中的光谱状态)和倾斜度角度。 Fe K $α$线的轮廓也随着主要的X射线源进度而变化,线条发光度和通量加权的质心能随进液阶段而变化。如果截短半径足够小,则可以显然在相位的亮度上延续了线的光度,因为磁盘轨道运动由于磁盘轨道运动而显着影响观察到的辐射,因此显然可以落后于相位的线光度。
Reprocessing of primary X-ray emission in the accretion disk of black hole X-ray binaries (BHXRBs) produces the reflection spectrum, with the characteristic Fe K$α$ fluorescence line. Strong low frequency quasi-periodic oscillations (QPOs) are observed from BHXRBs, and the dependence of QPO properties (e.g., phase-lag) on the inclination angle suggests that the observed QPO may be associated with a geometrical effect, e.g., the precession of the X-ray source due to frame-dragging near the spining black hole. Here, in the scenario of Lense-Thirring precession of the X-ray source, we use a Monte-Carlo simulation of radiative transfer to study the irradiation/reflection and the resultant spectral properties including the Fe K$α$ line, as a function of precession phase (time). We found that the reflection fraction, i.e., the ratio of the incident flux towards the disk and the direct flux towards to the observer at infinity, is modulated with the precession phase, which depends on the truncation radius (i.e., the spectral state in the truncated disk model) and the inclination angle. The Fe K$α$ line profile also changes as the primary X-ray source precesses, with the line luminosity and the flux-weighted centroid energy varying with the precession phase. The periodically modulated 2-10 keV continuum flux could apparently lag the line luminosity in phase, if the truncation radius is small enough for Doppler effects due to disk orbital motion to significantly affect the observed radiation.