论文标题

在自旋轨道耦合旋转自旋-1冷凝物中的涡旋晶格形成

Vortex-lattice formation in a spin-orbit coupled rotating spin-1 condensate

论文作者

Adhikari, S. K.

论文摘要

我们研究了旋转{rashba}旋转的旋转轨道(So)耦合的quasi-two二维(quasi-2d)超细旋转1型纺纱物物bose-einstein凝结物(bec)在$ x-y $平面中,使用底层平均平均层次的gross-field gross-pitskii equine。 %该系统的波函​​数的三个组件对应于Hyper-Fine Spin $ F_Z = +1,0,-1 $的三个投影。在这种情况下,未旋转的{rashba}所谓耦合的旋转旋转器BEC可以以三个组件中不同角动量的涡流形式产生拓扑激发,例如$(0,+1,+2)$ - 和$(-1,0,+1)$ - 类型的态度在铁磁和抗铁磁旋转旋转旋转器中:括号中的数字表示三个组成部分的涡流动量,其三个组成部分的涡流动量具有负符号为抗Vortex的负符号。这些具有内在涡度的状态的存在破坏了沿$ z $和$ -z $轴旋转与涡旋之间的对称性,因此在旋转的Quasi-2D Quasi-2D Spinor-Spinor Ferromagnetic和抗菌磁性和抗Ferromagnetic中产生了各种各样的涡旋晶体和反涡流式晶状体,不可能在Scalar中使用。 {对于弱耦合,}我们找到了这些状态的两种类型的对称性$ - $ hexagonal和“ square”。六角形(平方)对称状态的涡旋在封闭的同心轨道上排列,最高为6、12、18 ... $($ 8,12,16 ... $)的涡流中的涡流。在这两个对称性中,发现方形涡流状态状态具有较小的能量。

We study the vortex-lattice formation in a rotating {Rashba} spin-orbit (SO) coupled quasi-two-dimensional (quasi-2D) hyper-fine spin-1 spinor Bose-Einstein condensate (BEC) in the $x-y$ plane using a numerical solution of the underlying mean-field Gross-Pitaevskii equation. % The wave function for this system %has three components corresponding to the three projections of hyper-fine spin $F_z= +1,0,-1$. In this case, the non-rotating {Rashba} SO-coupled spinor BEC can have topological excitation in the form of vortices of different angular momenta in the three components, e.g. the $(0,+1,+2)$- and $(-1,0,+1)$-type states in ferromagnetic and anti-ferromagnetic spinor BEC: the numbers in the parenthesis denote the intrinsic angular momentum of the vortex states of the three components with the negative sign denoting an anti-vortex. The presence of these states with intrinsic vorticity breaks the symmetry between rotation with vorticity along the $z$ and $-z$ axes and thus generates a rich variety of vortex-lattice and anti-vortex-lattice states in a rotating quasi-2D spin-1 spinor ferromagnetic and anti-ferromagnetic BEC, not possible in a scalar BEC. {For weak SO coupling, } we find two types of symmetries of these states $-$ hexagonal and "square". The hexagonal (square) symmetry state has vortices arranged in closed concentric orbits with a maximum of $6, 12, 18...$ ($8,12,16...$) vortices in successive orbits. Of these two symmetries, the square vortex-lattice state is found to have the smaller energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源