论文标题

NLP中的神经无监督域的适应---调查

Neural Unsupervised Domain Adaptation in NLP---A Survey

论文作者

Ramponi, Alan, Plank, Barbara

论文摘要

深度神经网络擅长从标记的数据学习并获得最先进的结果,其中包括各种自然语言处理任务。相比之下,从未标记的数据中学习,尤其是在域转移下,仍然是一个挑战。在最新进展中,在本调查中,我们回顾了不需要标记为目标域数据的神经无监督的域适应技术。这是一个更具挑战性但更广泛的设置。我们概述了从早期的传统非神经方法到预训练的模型转移的方法。我们还重新审视了域的概念,我们发现了受到最关注的自然语言处理任务的偏见。最后,我们概述了未来的方向,尤其是对未来NLP的分布概括的广泛需求。

Deep neural networks excel at learning from labeled data and achieve state-of-the-art resultson a wide array of Natural Language Processing tasks. In contrast, learning from unlabeled data, especially under domain shift, remains a challenge. Motivated by the latest advances, in this survey we review neural unsupervised domain adaptation techniques which do not require labeled target domain data. This is a more challenging yet a more widely applicable setup. We outline methods, from early traditional non-neural methods to pre-trained model transfer. We also revisit the notion of domain, and we uncover a bias in the type of Natural Language Processing tasks which received most attention. Lastly, we outline future directions, particularly the broader need for out-of-distribution generalization of future NLP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源