论文标题
欧拉的谐音和连接扩展的总和
Euler sums of generalized harmonic numbers and connected extensions
论文作者
论文摘要
本文介绍了Euler的总和超期数字的评估$ h_ {n}^{\ left(p,q \ first)} $ \ [ζ_[ζ_ } \ dfrac {h_ {n}^{\ left(p,q \ right)}}}} {n^{r}}%\],根据著名的通用谐波数量的总和。此外,根据Riemann Zeta值评估了几个无限序列的术语,其术语由某些谐波数和互惠系数组成。
This paper presents the evaluation of the Euler sums of generalized hyperharmonic numbers $H_{n}^{\left( p,q\right) }$ \[ ζ_{H^{\left( p,q\right) }}\left( r\right) =\sum\limits_{n=1}^{\infty }\dfrac{H_{n}^{\left( p,q\right) }}{n^{r}}% \] in terms of the famous Euler sums of generalized harmonic numbers. Moreover, several infinite series, whose terms consist of certain harmonic numbers and reciprocal binomial coefficients, are evaluated in terms of Riemann zeta values.