论文标题

在随机扰动密集图中的小彩虹集团

Small rainbow cliques in randomly perturbed dense graphs

论文作者

Aigner-Horev, Elad, Danon, Oran, Hefetz, Dan, Letzter, Shoham

论文摘要

对于两个图$ g $和$ h $,写$ g \ stackrel {\ mathrm {rbw}} {\ longrightArrow} 我们研究了这种所谓的\ emph {anti-ramsey}属性的阈值,以随机扰动的密集图,这是$ g \ cup \ cup \ mathbb {g}(n,p)$的工会,其中$ g $是$ n $ n $ vertex,至少是$ d $ d> $ d $ n $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d是独立的。 在同伴文章中,我们证明了该物业的门槛 $ g \ cup \ mathbb {g}(n,n,p)\ stackrel {\ mathrm {rbw}}} {\ longrightArrow} k_ \ ell $ is $ n^{ - 1/m_2(k _ {k _ {\ weft \ lew lceil \ ell/2 \ geq 9 $。对于较小的$ \ ell $,阈值的行为更加不正当,对于$ 4 \ le \ ell \ le 7 $,它们显着向下偏离上述美学形式,捕获了\ emph {ligal} cliques的阈值。 特别是,我们表明$ \ ell \ in \ {4、5、7 \} $的阈值分别是$ n^{ - 5/4} $,$ n^{ - 1} $,和$ n^{ - 7/15} $。对于$ \ ell \ in \ {6,8 \} $,我们确定阈值最高为$(1 + o(1))$ - 因素中的因素:它们是$ n^{ - (2/3 + o(1))} $和$ n^{ - (2/5 + O(1))} $。对于$ \ ell = 3 $,阈值为$ n^{ - 2} $;这是从我们的同伴论文中关于奇数周期的更一般结果。

For two graphs $G$ and $H$, write $G \stackrel{\mathrm{rbw}}{\longrightarrow} H$ if $G$ has the property that every \emph{proper} colouring of its edges yields a \emph{rainbow} copy of $H$. We study the thresholds for such so-called \emph{anti-Ramsey} properties in randomly perturbed dense graphs, which are unions of the form $G \cup \mathbb{G}(n,p)$, where $G$ is an $n$-vertex graph with edge-density at least $d >0$, and $d$ is independent of $n$. In a companion article, we proved that the threshold for the property $G \cup \mathbb{G}(n,p) \stackrel{\mathrm{rbw}}{\longrightarrow} K_\ell$ is $n^{-1/m_2(K_{\left\lceil \ell/2 \right\rceil})}$, whenever $\ell \geq 9$. For smaller $\ell$, the thresholds behave more erratically, and for $4 \le \ell \le 7$ they deviate downwards significantly from the aforementioned aesthetic form capturing the thresholds for \emph{large} cliques. In particular, we show that the thresholds for $\ell \in \{4, 5, 7\}$ are $n^{-5/4}$, $n^{-1}$, and $n^{-7/15}$, respectively. For $\ell \in \{6, 8\}$ we determine the threshold up to a $(1 + o(1))$-factor in the exponent: they are $n^{-(2/3 + o(1))}$ and $n^{-(2/5 + o(1))}$, respectively. For $\ell = 3$, the threshold is $n^{-2}$; this follows from a more general result about odd cycles in our companion paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源