论文标题
“用我的大小来判断我(名词),对吗?
"Judge me by my size (noun), do you?'' YodaLib: A Demographic-Aware Humor Generation Framework
论文作者
论文摘要
幽默的主观性质使计算机化的幽默产生成为一项艰巨的任务。我们提出了一个自动幽默生成框架,以填补疯狂的故事中的空白,同时考虑到所需的受众的人口统计背景。我们收集了一个由此类故事组成的数据集,这些数据集由亚马逊机械土耳其人的精心挑选的工人填写和判断。我们在BERT平台上构建,以预测不完整句子中的位置偏见的单词填充物,并微调BERT在句子中对特定于位置的幽默进行分类。我们利用这些组件来生产Yodalib,这是一个完全自动化的疯狂的Libs风格的幽默生成框架,该框架选择并排名适当的候选单词和句子,以生成针对某些人口统计学量身定制的连贯和有趣的故事。我们的实验结果表明,Yodalib的表现优于先前针对此任务提出的半自动化方法,同时还超过了定性和定量分析中的人类注释。
The subjective nature of humor makes computerized humor generation a challenging task. We propose an automatic humor generation framework for filling the blanks in Mad Libs stories, while accounting for the demographic backgrounds of the desired audience. We collect a dataset consisting of such stories, which are filled in and judged by carefully selected workers on Amazon Mechanical Turk. We build upon the BERT platform to predict location-biased word fillings in incomplete sentences, and we fine tune BERT to classify location-specific humor in a sentence. We leverage these components to produce YodaLib, a fully-automated Mad Libs style humor generation framework, which selects and ranks appropriate candidate words and sentences in order to generate a coherent and funny story tailored to certain demographics. Our experimental results indicate that YodaLib outperforms a previous semi-automated approach proposed for this task, while also surpassing human annotators in both qualitative and quantitative analyses.