论文标题

空间扩展固定的相变

Phase transitions for spatially extended pinning

论文作者

Caravenna, Francesco, Hollander, Frank den

论文摘要

我们考虑了一种与线性接口相互作用的长度$ n $的定向聚合物。单体携带I.I.D.随机费用$(ω_i)_ {i = 1}^n $以$ \ mathbb {r} $中的均值零和方差为一。每个单体$ i $贡献了对hamiltonian相互作用的能量$(βΩ_i-h)$(s_i)$,其中$ s_i \ in \ mathbb {z} $是单体$ i $相对于界面的高度[0,\ infty)$是反向温度,而$ h \ in \ mathbb {r} $是电荷偏差参数。聚合物的配置是根据与相互作用Hamiltonian相关的Gibbs度量加权的,其中Markov链在$ \ Mathbb {Z} $上给出了参考度量。我们将每个单体的淬火和退火能量研究为$ n \ to \ infty $。我们表明,每种都沿$(β,h)$平面的临界曲线表现出一个相变,将局部相(聚合物靠近界面保持接近)与离域相(聚合物从界面徘徊)分开。我们得出了临界曲线的变异公式,并根据退火临界曲线在淬灭的临界曲线上获得上和下限。此外,对于通过Bessel随机步行给出参考度量的特殊情况,我们将退火的自由能的缩放限制为$β,h \ downarrow 0 $在三种不同的范围内,用于$φ$的尾部指数。

We consider a directed polymer of length $N$ interacting with a linear interface. The monomers carry i.i.d. random charges $(ω_i)_{i=1}^N$ taking values in $\mathbb{R}$ with mean zero and variance one. Each monomer $i$ contributes an energy $(βω_i-h)φ(S_i)$ to the interaction Hamiltonian, where $S_i \in \mathbb{Z}$ is the height of monomer $i$ with respect to the interface, $φ: \mathbb{Z} \to [0,\infty)$ is the interaction potential, $β\in [0,\infty)$ is the inverse temperature, and $h \in \mathbb{R}$ is the charge bias parameter. The configurations of the polymer are weighted according to the Gibbs measure associated with the interaction Hamiltonian, where the reference measure is given by a Markov chain on $\mathbb{Z}$. We study both the quenched and the annealed free energy per monomer in the limit as $N\to\infty$. We show that each exhibits a phase transition along a critical curve in the $(β, h)$-plane, separating a localized phase (where the polymer stays close to the interface) from a delocalized phase (where the polymer wanders away from the interface). We derive variational formulas for the critical curves and we obtain upper and lower bounds on the quenched critical curve in terms of the annealed critical curve. In addition, for the special case where the reference measure is given by a Bessel random walk, we derive the scaling limit of the annealed free energy as $β, h \downarrow 0$ in three different regimes for the tail exponent of $φ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源