论文标题
基于示例的生成面部编辑
Exemplar-based Generative Facial Editing
论文作者
论文摘要
由于生成模型的力量不断增加,图像合成已经见证了实质性进步。本文,我们提出了一种基于典范的面部编辑的新生成方法,以介绍区域的形式。我们的方法首先掩盖了面部编辑区域,以消除原始图像的像素约束,然后可以通过从参考图像中学习相应的信息来完成掩盖区域来实现基于示例的面部编辑。另外,我们将属性标签限制在模型删除的编码上,以避免将不希望的信息从示例传输到原始图像编辑区域。实验结果表明,与几乎所有现有方法相比,我们的方法可以产生多样化和个性化的面部编辑结果,并提供更多的用户控制灵活性。
Image synthesis has witnessed substantial progress due to the increasing power of generative model. This paper we propose a novel generative approach for exemplar based facial editing in the form of the region inpainting. Our method first masks the facial editing region to eliminates the pixel constraints of the original image, then exemplar based facial editing can be achieved by learning the corresponding information from the reference image to complete the masked region. In additional, we impose the attribute labels constraint to model disentangled encodings in order to avoid undesired information being transferred from the exemplar to the original image editing region. Experimental results demonstrate our method can produce diverse and personalized face editing results and provide far more user control flexibility than nearly all existing methods.