论文标题
从BKT-ROUGH到KPZ-ROUGH表面的跨界界面限制晶体生长/衰退
Crossover from BKT-Rough to KPZ-Rough Surfaces for Interface-Limited Crystal Growth/Recession
论文作者
论文摘要
使用非平衡稳态中的Monte Carlo方法研究了替代表面上的berezinskii-Kosterlitz-- kertholess-kosterlitz-(BKT)粗糙的表面到kardar-parisi-zhang(kpz)粗糙表面的粗糙表面,以解决理论结果和实验之间的差异。所使用的模型是一个有限的固体固体(RSO)模型,该模型具有离散的哈密顿量,没有表面或体积扩散(界面有限的生长/衰退)。计算(001)和(111)表面之间偏斜的杂化表面的表面宽度的温度,生长,系统大小和表面斜率依赖性的驱动力。还计算了表面速度,表面的动力学系数和局部合并步骤的平均高度。与(2+1)表面的公认理论相反,我们发现从BKT(对数)粗糙表面到KPZ(代数)粗糙表面的交叉点与(001)表面的动力学粗糙点不同。发现晶体生长的驱动力是确定系统是在BKT类还是KPZ类中的相关参数。还确定了广告原子,腺体,岛屿和负岛群落的表面波动,这有助于制造BKT-rough表面。
The crossover from a Berezinskii--Kosterlitz--Thouless (BKT) rough surface to a Kardar--Parisi--Zhang (KPZ) rough surface on a vicinal surface is studied using the Monte Carlo method in the non-equilibrium steady state in order to address discrepancies between theoretical results and experiments. The model used is a restricted solid-on-solid (RSOS) model with a discrete Hamiltonian without surface or volume diffusion (interface limited growth/recession). The temperature, driving force for growth, system size, and surface slope dependences of the surface width are calculated for vicinal surfaces tilted between the (001) and (111) surfaces. The surface velocity, kinetic coefficient of the surface, and mean height of the locally merged steps are also calculated. In contrast to the accepted theory for (2+1) surfaces, we found that the crossover point from a BKT (logarithmic) rough surface to a KPZ (algebraic) rough surface is different from the kinetic roughening point for the (001) surface. The driving force for crystal growth was found to be a relevant parameter for determining whether the system is in the BKT class or the KPZ class. It was also determined that ad-atoms, ad-holes, islands, and negative-islands block surface fluctuations, which contributes to making a BKT-rough surface.