论文标题
家庭的动态$λ$切线$ z^2 $
Dynamics of the family $λ$ tangent $z^2$
论文作者
论文摘要
本文讨论了Meromorphic Maps $λ\ tan z^2 $ for $λ\ in \ Mathbb c^*$的动态平面($ z $平面)的一些拓扑特性。在动态平面中,我证明没有赫尔曼环,当参数位于包含原点的双曲线分量中时,朱莉娅集合是地图的cantor集。当参数位于参数平面中的其他双曲线成分中时,朱莉娅集合已连接到地图。
This article discusses some topological properties of the dynamical plane ($z$-plane) of the holomorphic family of meromorphic maps $λ\tan z^2$ for $ λ\in \mathbb C^*$. In the dynamical plane, I prove that there is no Herman ring and the Julia set is a Cantor set for the maps when the parameter is in the hyperbolic component containing the origin. Julia set is connected for the maps when the parameters are in other hyperbolic components in the parameter plane.