论文标题

家庭的动态$λ$切线$ z^2 $

Dynamics of the family $λ$ tangent $z^2$

论文作者

Nandi, Santanu

论文摘要

本文讨论了Meromorphic Maps $λ\ tan z^2 $ for $λ\ in \ Mathbb c^*$的动态平面($ z $平面)的一些拓扑特性。在动态平面中,我证明没有赫尔曼环,当参数位于包含原点的双曲线分量中时,朱莉娅集合是地图的cantor集。当参数位于参数平面中的其他双曲线成分中时,朱莉娅集合已连接到地图。

This article discusses some topological properties of the dynamical plane ($z$-plane) of the holomorphic family of meromorphic maps $λ\tan z^2$ for $ λ\in \mathbb C^*$. In the dynamical plane, I prove that there is no Herman ring and the Julia set is a Cantor set for the maps when the parameter is in the hyperbolic component containing the origin. Julia set is connected for the maps when the parameters are in other hyperbolic components in the parameter plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源