论文标题
受控的马瑟·瑟斯顿定理
Controlled Mather-Thurston theorems
论文作者
论文摘要
米尔诺,木材,马瑟和瑟斯顿的古典结果在令人惊讶的地方产生平坦的联系。 Milnor-Wood的不平等是针对表面上的圆形捆绑包,而Mather-Thurston定理是关于将一般歧管捆绑包与承认平坦连接的人保持。惊喜来自Chern-Weyl理论的障碍以及其他光滑的障碍物,例如Bott类和戈多克斯的差异。避免了矛盾,因为积极结果的结构组大于障碍物所需的结构组,例如$ \ operatotorName {psl}(2,\ m马理{r})$ vers $ \ permatatorName {u}(1)$在前情况下,而后者在后者中$ c^1 $对$ c^2 $。本文添加了两种类型的控制增强了积极的结果:在许多情况下,我们能够(1)将Mather-Thurston Coobordism改进到半$ s $ bobordism(SSC),(2)提供了有关如何以及在何种程度上以及在何种程度上徘徊的详细信息,必须从初始的,小的,较小的,较大的一个组中徘徊。 动机是为物理程序奠定数学基础。哲学是,生活在IR中,我们无法期望知道,对于给定的捆绑包,它的曲率或平坦,因为我们无法解决基础上可能存在的精细规模拓扑,SSC引入了SSC,也无法违反纤维扭曲的微小对称性。基本拓扑和结构组的小尺度,紫外线,“失真”允许平坦的连接模拟较大尺度的曲率。目的是找到二元性,根据二元性,例如麦克斯韦(Maxwell)的$ f \ wedge f^\ ast $和希尔伯特(Hilbert)的$ \ int r \ dvol $被衡量“扭曲”的动作所取代。从这种角度来看,曲率是由于重新归一化的离散,群体理论结构而引起的。
Classical results of Milnor, Wood, Mather, and Thurston produce flat connections in surprising places. The Milnor-Wood inequality is for circle bundles over surfaces, whereas the Mather-Thurston Theorem is about cobording general manifold bundles to ones admitting a flat connection. The surprise comes from the close encounter with obstructions from Chern-Weyl theory and other smooth obstructions such as the Bott classes and the Godbillion-Vey invariant. Contradiction is avoided because the structure groups for the positive results are larger than required for the obstructions, e.g. $\operatorname{PSL}(2,\mathbb{R})$ versus $\operatorname{U}(1)$ in the former case and $C^1$ versus $C^2$ in the latter. This paper adds two types of control strengthening the positive results: In many cases we are able to (1) refine the Mather-Thurston cobordism to a semi-$s$-cobordism (ssc) and (2) provide detail about how, and to what extent, transition functions must wander from an initial, small, structure group into a larger one. The motivation is to lay mathematical foundations for a physical program. The philosophy is that living in the IR we cannot expect to know, for a given bundle, if it has curvature or is flat, because we can't resolve the fine scale topology which may be present in the base, introduced by a ssc, nor minute symmetry violating distortions of the fiber. Small scale, UV, "distortions" of the base topology and structure group allow flat connections to simulate curvature at larger scales. The goal is to find a duality under which curvature terms, such as Maxwell's $F \wedge F^\ast$ and Hilbert's $\int R\ dvol$ are replaced by an action which measures such "distortions." In this view, curvature results from renormalizing a discrete, group theoretic, structure.