论文标题

使用随机数来获得给定密度的Kohn-Sham潜力

Using random numbers to obtain Kohn-Sham potential for a given density

论文作者

Kumar, Ashish, Harbola, Manoj K.

论文摘要

多年来开发的大多数密度到优势反转方法遵循一般算法$ v_ {xc}^{i + 1}(\ textbf {r})= v_ {xc}^{xc}^{i} {i} {i}(\ textbf {r}) $ΔV_{XC}(\ textbf {r})= \ frac {ΔS[ρ]} {Δρ(\ textbf {r})} \ big | _ | _ {ρ_i(\ textbf {\ textbf {r})} - {r}} - } - } - } - } - } - } - \ frac {δs[ρ]} {Δρ(\ textbf {r})} \ big | _ {ρ_0(\ textbf {r})} $和$ s [ρ] $是一个适当选择的密度密度功能。在这项工作中,我们表明该算法可与随机数一起使用,以获得给定密度的交换相关潜力。这消除了在每个迭代步骤中评估功能$ s [ρ] $的需求。通过计算原子,簇和钩子的交换相关电位来证明该方法。

Most of the density-to-potential inversion methods developed over the years follow a general algorithm $ v_{xc}^{i+1}(\textbf{r}) = v_{xc}^{i}(\textbf{r}) + Δv_{xc}(\textbf{r})$, where $Δv_{xc}(\textbf{r}) = \frac{δS[ρ]}{δρ(\textbf{r})} \Big |_{ ρ_i(\textbf{r})} - \frac{δS[ρ]}{δρ(\textbf{r})}\Big|_{ ρ_0(\textbf{r})}$ and $S[ρ]$ is an appropriately chosen density functional. In this work we show that this algorithm can be used with random numbers to obtain the exchange-correlation potential for a given density. This obviates the need to evaluate the functional $S[ρ]$ in each iterative step. The method is demonstrated by calculating exchange-correlation potential of atoms, clusters and the Hookium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源