论文标题
sdct-auxnet $^θ$:DCT增强污渍Deconcoltolutional CNN,带有辅助分类器用于癌症诊断
SDCT-AuxNet$^θ$: DCT Augmented Stain Deconvolutional CNN with Auxiliary Classifier for Cancer Diagnosis
论文作者
论文摘要
急性淋巴细胞白血病(ALL)是全球普遍存在的小儿白细胞癌。随着卷积神经网络(CNN)的普及,计算机辅助诊断癌症引起了极大的关注。这样的工具很容易部署,并且具有成本效益。因此,这些可以实现癌症诊断设施的广泛覆盖。但是,到目前为止,由于大型培训数据集的不可利用性,因此为所有癌症提供了这种工具的开发。恶性和正常细胞之间的视觉相似性增加了问题的复杂性。本文讨论了大型数据集的最新发布,并为所有癌症的细胞图像分类提供了一种新颖的深度学习结构。所提出的体系结构,即SDCT-Auxnet $^θ$是一个2模块的框架,它在一个模块中利用紧凑型CNN作为主分类器,另一个模块中的内核SVM作为辅助分类器。虽然CNN分类器通过双线性解释使用功能,但辅助分类器使用了光谱平均功能。此外,该CNN在光密度域中的染色卷积数量图像上进行了训练,而不是常规的RGB图像。提出了一种新颖的测试策略,该策略利用其预测类标签的置信度得分来利用分类器进行决策。在我们最近发布的15114张图像所有癌症和健康细胞图像的公共数据集上进行了详尽的实验,以确定所提出的方法的有效性,该方法对主题级别的可变性也很强。在这个具有挑战性的数据集中,获得了最好的加权F1分数94.8 $ \%$。
Acute lymphoblastic leukemia (ALL) is a pervasive pediatric white blood cell cancer across the globe. With the popularity of convolutional neural networks (CNNs), computer-aided diagnosis of cancer has attracted considerable attention. Such tools are easily deployable and are cost-effective. Hence, these can enable extensive coverage of cancer diagnostic facilities. However, the development of such a tool for ALL cancer was challenging so far due to the non-availability of a large training dataset. The visual similarity between the malignant and normal cells adds to the complexity of the problem. This paper discusses the recent release of a large dataset and presents a novel deep learning architecture for the classification of cell images of ALL cancer. The proposed architecture, namely, SDCT-AuxNet$^θ$ is a 2-module framework that utilizes a compact CNN as the main classifier in one module and a Kernel SVM as the auxiliary classifier in the other one. While CNN classifier uses features through bilinear-pooling, spectral-averaged features are used by the auxiliary classifier. Further, this CNN is trained on the stain deconvolved quantity images in the optical density domain instead of the conventional RGB images. A novel test strategy is proposed that exploits both the classifiers for decision making using the confidence scores of their predicted class labels. Elaborate experiments have been carried out on our recently released public dataset of 15114 images of ALL cancer and healthy cells to establish the validity of the proposed methodology that is also robust to subject-level variability. A weighted F1 score of 94.8$\%$ is obtained that is best so far on this challenging dataset.