论文标题
与经典杂物构造相关的可集成的哈密顿式层次结构的几何结构
A geometric construction of integrable Hamiltonian hierarchies associated with the classical affine W-algebras
论文作者
论文摘要
一类经典的仿射W-代数被证明是与某些prounipotent proalgebraic群体的双层空间的坐标环的差异代数一样的同构代数。作为一种应用,与它们相关的可集成的哈密顿式层次结构是几何构造的,从而在主要情况下概括了Feigin-Frenkel和Enriquez-Frenkel的相应结果。
A class of classical affine W-algebras are shown to be isomorphic as differential algebras to the coordinate rings of double coset spaces of certain prounipotent proalgebraic groups. As an application, integrable Hamiltonian hierarchies associated with them are constructed geometrically, generalizing the corresponding result of Feigin-Frenkel and Enriquez-Frenkel for the principal cases.