论文标题

使用深度学习重建未采样的光声显微镜图像

Reconstructing undersampled photoacoustic microscopy images using deep learning

论文作者

DiSpirito III, Anthony, Li, Daiwei, Vu, Tri, Chen, Maomao, Zhang, Dong, Luo, Jianwen, Horstmeyer, Roarke, Yao, Junjie

论文摘要

光声学显微镜(PAM)中的主要技术挑战是空间分辨率和成像速度之间的必要折衷。在这项研究中,我们提出了深度学习原理的新颖应用,以重建淡采样的PAM图像,并超越空间分辨率和成像速度之间的权衡。我们比较了各种卷积神经网络(CNN)架构,并选择了产生最佳结果的完全密集的U-NET(FD U-NET)模型。为了模仿实践中的各种不同的采样条件,我们人为地减少了以不同比率的小鼠脑脉管系统的完全采样的PAM图像。这使我们不仅可以确定建立地面真理,还可以在各种成像条件下训练和测试我们的深度学习模型。我们的结果和数值分析共同证明了我们的模型的稳健性能,以重建最初的像素的2%的PAM图像,这可能会有效地缩短成像时间而不会实质性地牺牲图像质量。

One primary technical challenge in photoacoustic microscopy (PAM) is the necessary compromise between spatial resolution and imaging speed. In this study, we propose a novel application of deep learning principles to reconstruct undersampled PAM images and transcend the trade-off between spatial resolution and imaging speed. We compared various convolutional neural network (CNN) architectures, and selected a fully dense U-net (FD U-net) model that produced the best results. To mimic various undersampling conditions in practice, we artificially downsampled fully-sampled PAM images of mouse brain vasculature at different ratios. This allowed us to not only definitively establish the ground truth, but also train and test our deep learning model at various imaging conditions. Our results and numerical analysis have collectively demonstrated the robust performance of our model to reconstruct PAM images with as few as 2% of the original pixels, which may effectively shorten the imaging time without substantially sacrificing the image quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源