论文标题

信息几何形状中量子状态密度及其在量子多参数估计中的应用

Measure of the density of quantum states in information geometry and its application in the quantum multi-parameter estimation

论文作者

Xing, Haijun, Fu, Libin

论文摘要

最近,从信息几何学的角度来看,对研究量子力学的兴趣越来越大,其中量子状态被描绘成具有投射性希尔伯特空间的点。通过将量子Fisher信息(QFI)作为投射希尔伯特空间的度量,估计一个小参数移位等于沿给定曲线区分相邻的量子状态。此后,信息几何形状在单个参数估计中起着重要作用。但是,缺乏高维度措施限制了其在研究多参数系统中的应用。在本文中,我们将讨论QFI体积元素的物理含义。它测量了投影希尔伯特空间中量子状态(IDQ)的内在密度,这是定义一类量子状态的(过度)完整性关系的度量。作为应用程序,IDQ可用于量子测量和多参数估计。我们发现,通过经典Fisher信息的不变体积来衡量一组有效估计器的可分辨状态(DDS)的密度,这是QFI的经典对应物,并用作统计流形的度量。相应地,提出了量子cramér-rao不平等的决定因素形式,以量化通过量子测量来推断IDQ的能力。结果,我们发现IDQ和最大DDS之间的差距在测量结果上。差距与不确定性关系有紧密的联系。用两个参数的三级系统举例说明,我们发现通过\ emph {vertex smeturements}(MVDDS)获得的最大DD等于量子几何张量的决定符的平方根。它表明IDQ和MVDD之间的方形间隙与浆果曲率的平方成正比。

Recently, there is a growing interest in study quantum mechanics from the information geometry perspective, where a quantum state is depicted with a point in the projective Hilbert space. By taking quantum Fisher information (QFI) as the metric of projective Hilbert spaces, estimating a small parameter shift is equivalent to distinguishing neighboring quantum states along a given curve. Henceforth, information geometry plays a significant role in the single parameter estimation. However, the absence of high dimensional measures limits its applications in studying the multi-parameter systems. In this paper, we will discuss the physical implications of the volume element of QFI. It measures the intrinsic density of quantum states (IDQS) in projective Hilbert spaces, which is, then, a measure to define the (over) completeness relation of a class of quantum states. As an application, IDQS can be used in quantum measurement and multi-parameter estimation. We find the density of distinguishable states (DDS) for a set of efficient estimators is measured by the invariant volume of the classical Fisher information, which is the classical counterpart of QFI and serves as the metric of statistical manifolds. Correspondingly, a determinant form of quantum Cramér-Rao inequality is proposed to quantify the ability to infer the IDQS via quantum measurement. As a result, we find a gap between IDQS and maximal DDS over the measurements. The gap has tight connections with the uncertainty relationship. Exemplified with the three-level system with two parameters, we find the maximal DDS attained via the \emph{vertex measurements} (MvDDS) equals the square root of the quantum geometric tensor's determinant. It indicates the square gap between IDQS and MvDDS is proportional to the square of Berry curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源