论文标题
(3+1)D拓扑超导体通过(1+1)d拓扑超导体的通勤投影仪模型
Commuting projector models for (3+1)d topological superconductors via string net of (1+1)d topological superconductors
论文作者
论文摘要
我们讨论了一种在DIII类中为(3+1)d拓扑超导体构建通勤投影仪哈密顿模型的方法。波函数由Kitaev电线的某种字符串网给出,该网络在时间逆转(T)域壁上装饰。我们的哈密顿量是在配备离散形式的旋转结构的通用3D歧管上提供的。我们将看到3D自旋结构如何在T域壁上诱导2D自旋结构(称为2D晶格上的Kasteleyn方向),这使得定义它们上的波动Kitaev电线。打破模型中的T对称性后,我们发现在时间逆转域壁上定义的对称性的不间断残留物。域壁支持受不间断对称性保护的2D非平凡的SPT,这使我们能够根据Hason,Komargodski和Thorngren的最新QFT参数来确定模型的SPT分类。
We discuss a way to construct a commuting projector Hamiltonian model for a (3+1)d topological superconductor in class DIII. The wave function is given by a sort of string net of the Kitaev wire, decorated on the time reversal (T) domain wall. Our Hamiltonian is provided on a generic 3d manifold equipped with a discrete form of the spin structure. We will see how the 3d spin structure induces a 2d spin structure (called a Kasteleyn direction on a 2d lattice) on T domain walls, which makes possible to define fluctuating Kitaev wires on them. Upon breaking the T symmetry in our model, we find the unbroken remnant of the symmetry which is defined on the time reversal domain wall. The domain wall supports the 2d non-trivial SPT protected by the unbroken symmetry, which allows us to determine the SPT classification of our model, based on the recent QFT argument by Hason, Komargodski, and Thorngren.