论文标题

随机空间森林

Random Spatial Forests

论文作者

Wai, Travis Hee, Young, Michael T., Szpiro, Adam A.

论文摘要

我们介绍了随机的空间森林,一种装袋回归树的方法,允许空间相关。我们的主要贡献是开发一种计算高效的树木建筑算法,该算法选择了树的每个拆分以进行空间相关性。我们评估了两种不同的方法来估计随机空间森林,这是一种伪样方法,将随机森林与Kriging结合在一起,并为一般的空间Smoothorts类别提供了非参数版本。与现有的两步方法相比,我们显示了提高方法的预测准确性,这些方法与一系列数值模拟结合了随机森林和kriging,并证明了其在2009年至2010年从美国大陆的元素碳,有机碳,硅和硫的测量结果上的性能。

We introduce random spatial forests, a method of bagging regression trees allowing for spatial correlation. Our main contribution is the development of a computationally efficient tree building algorithm which selects each split of the tree adjusting for spatial correlation. We evaluate two different approaches for estimation of random spatial forests, a pseudo-likelihood approach combining random forests with kriging and a non-parametric version for a general class of spatial smoothers. We show improved prediction accuracy of our method compared to existing two-step approaches combining random forests and kriging across a range of numerical simulations and demonstrate its performance on elemental carbon, organic carbon, silicon, and sulfur measurements across the continental United States from 2009-2010.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源