论文标题

KGTK:用于大型知识图操作和分析的工具包

KGTK: A Toolkit for Large Knowledge Graph Manipulation and Analysis

论文作者

Ilievski, Filip, Garijo, Daniel, Chalupsky, Hans, Divvala, Naren Teja, Yao, Yixiang, Rogers, Craig, Li, Rongpeng, Liu, Jun, Singh, Amandeep, Schwabe, Daniel, Szekely, Pedro

论文摘要

知识图(KGS)已成为代表,共享和添加知识的首选技术。尽管KG已成为主流技术,但用于大规模运营的RDF/SPARQL中心工具集是异质的,难以集成的,并且仅涵盖数据科学应用中通常需要的一部分操作。在本文中,我们提出了一个以数据科学为中心的工具包KGTK,旨在代表,创建,转换,增强和分析KGS。 KGTK代表表格中的图形,并利用了为数据科学应用程序开发的流行库,使大量开发人员能够轻松地为其应用构建知识图形管道。我们用现实世界的场景说明了框架,在这些场景中,我们使用kgtk来整合和操纵大型kg,例如wikidata,dbpedia和conceptnet。

Knowledge graphs (KGs) have become the preferred technology for representing, sharing and adding knowledge to modern AI applications. While KGs have become a mainstream technology, the RDF/SPARQL-centric toolset for operating with them at scale is heterogeneous, difficult to integrate and only covers a subset of the operations that are commonly needed in data science applications. In this paper we present KGTK, a data science-centric toolkit designed to represent, create, transform, enhance and analyze KGs. KGTK represents graphs in tables and leverages popular libraries developed for data science applications, enabling a wide audience of developers to easily construct knowledge graph pipelines for their applications. We illustrate the framework with real-world scenarios where we have used KGTK to integrate and manipulate large KGs, such as Wikidata, DBpedia and ConceptNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源