论文标题
哪个同质代数来自转移?
Which homotopy algebras come from transfer?
论文作者
论文摘要
我们表征了$ a_ \ infty $ - 结构,这些结构是通过链均匀等效性或准同态转移的,回答了D. Sullivan提出的问题。在此过程中,我们提出了一种弱$ a_ \ indty $ morphimiss的阻塞理论。然后,我们将结果推广到特征零字段上的$ {\ Mathcal P} _ \ infty $ - 结构,对于任何二次koszul operad $ {\ Mathcal p} $。
We characterize $A_\infty$-structures that are transfers over a chain homotopy equivalence or a quasi-isomorphism, answering a question posed by D. Sullivan. Along the way, we present an obstruction theory for weak $A_\infty$-morphisms over an arbitrary commutative ring. We then generalize our results to ${\mathcal P}_\infty$-structures over a field of characteristic zero, for any quadratic Koszul operad ${\mathcal P}$.