论文标题

使用平行的卡尔曼滤波器算法加速粒子轨道的重建

Speeding up Particle Track Reconstruction using a Parallel Kalman Filter Algorithm

论文作者

Lantz, Steven, McDermott, Kevin, Reid, Michael, Riley, Daniel, Wittich, Peter, Berkman, Sophie, Cerati, Giuseppe, Kortelainen, Matti, Hall, Allison Reinsvold, Elmer, Peter, Wang, Bei, Giannini, Leonardo, Krutelyov, Vyacheslav, Masciovecchio, Mario, Tadel, Matevž, Würthwein, Frank, Yagil, Avraham, Gravelle, Brian, Norris, Boyana

论文摘要

对于高肌度大强壮的强子对撞机(HL-LHC),预期的最具挑战性的问题之一是确定事件重建过程中带电颗粒的轨迹。 LHC今天使用的算法依赖于卡尔曼过滤,该算法逐渐构建物理轨迹,同时结合了材料效应和误差估计。认识到需要更快的计算吞吐量的需求,我们采用了基于Kalman-Filter的方法,用于高度平行的多核SIMD体系结构,这些方法现在在高性能硬件中很普遍。在本文中,我们讨论了改进的跟踪算法的设计和性能,称为MKFIT。该算法的一个关键部分是Matriplex库,其中包含专用代码,以最佳地对小矩阵进行操作。 MKFIT算法的物理性能与CMS检测器内模拟质子 - 普罗顿碰撞的轨道重建轨道时,与标称CMS跟踪算法相当。我们研究算法的缩放量是使用的并行资源所使用的函数,并从矢量化和多线程中找到了较大的加速。当在CMS软件框架内的单线程应用程序中运行时,MKFIT的速度达到了6倍,比标称算法相比达到6倍。

One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is determining the trajectory of charged particles during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filter-based methods for highly parallel, many-core SIMD architectures that are now prevalent in high-performance hardware. In this paper, we discuss the design and performance of the improved tracking algorithm, referred to as mkFit. A key piece of the algorithm is the Matriplex library, containing dedicated code to optimally vectorize operations on small matrices. The physics performance of the mkFit algorithm is comparable to the nominal CMS tracking algorithm when reconstructing tracks from simulated proton-proton collisions within the CMS detector. We study the scaling of the algorithm as a function of the parallel resources utilized and find large speedups both from vectorization and multi-threading. mkFit achieves a speedup of a factor of 6 compared to the nominal algorithm when run in a single-threaded application within the CMS software framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源