论文标题

局部恒定的建设性函数和间隔的连接性

Locally Constant Constructive Functions and Connectedness of Intervals

论文作者

Chernov, Viktor

论文摘要

我们证明,在间隔上,每个局部恒定的构建函数实际上都是恒定的函数。这回答了安德烈·鲍尔(Andrej Bauer)提出的一个问题。作为一个相关的结果,我们表明,实际上是连接了由建设性实数组成的间隔,但可以分解为两个顺序闭合的非巨型集合的不相交联合。

We prove that every locally constant constructive function on an interval is in fact a constant function. This answers a question formulated by Andrej Bauer. As a related result we show that an interval consisting of constructive real numbers is in fact connected, but can be decomposed into the disjoint union of two sequentially closed nonempy sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源