论文标题
通过混合金字塔图网络探索空间意义,以重新识别车辆
Exploring Spatial Significance via Hybrid Pyramidal Graph Network for Vehicle Re-identification
论文作者
论文摘要
现有的车辆重新识别方法通常使用空间合并操作来汇总通过现成的骨干网络提取的特征图。他们忽略了探索特征图的空间意义,最终降低了车辆的重新识别性能。在本文中,首先提出了创新的空间图网络(SGN),以精心探讨特征图的空间意义。 SGN堆叠多个空间图(SGS)。每个SG都将特征映射的元素分配为节点,并利用空间邻域关系来确定节点之间的边缘。在SGN的传播过程中,SG上的每个节点及其空间邻居都聚集到下一个SG。在下一个SG上,每个聚合的节点都会使用可学习的参数重新加权,以在相应的位置找到显着性。其次,一种新型的金字塔图网络(PGN)旨在全面探索在多个尺度上特征图的空间意义。 PGN以金字塔方式组织了多个SGN,并使每个SGN手柄都具有特定量表的地图。最后,通过嵌入基于Resnet-50的骨干网络后面的PGN来开发混合锥体图网络(HPGN)。在三个大型车辆数据库(即Veri776,warewid和Veri-wild)上进行了广泛的实验表明,所提出的HPGN优于最先进的车辆重新识别方法。
Existing vehicle re-identification methods commonly use spatial pooling operations to aggregate feature maps extracted via off-the-shelf backbone networks. They ignore exploring the spatial significance of feature maps, eventually degrading the vehicle re-identification performance. In this paper, firstly, an innovative spatial graph network (SGN) is proposed to elaborately explore the spatial significance of feature maps. The SGN stacks multiple spatial graphs (SGs). Each SG assigns feature map's elements as nodes and utilizes spatial neighborhood relationships to determine edges among nodes. During the SGN's propagation, each node and its spatial neighbors on an SG are aggregated to the next SG. On the next SG, each aggregated node is re-weighted with a learnable parameter to find the significance at the corresponding location. Secondly, a novel pyramidal graph network (PGN) is designed to comprehensively explore the spatial significance of feature maps at multiple scales. The PGN organizes multiple SGNs in a pyramidal manner and makes each SGN handles feature maps of a specific scale. Finally, a hybrid pyramidal graph network (HPGN) is developed by embedding the PGN behind a ResNet-50 based backbone network. Extensive experiments on three large scale vehicle databases (i.e., VeRi776, VehicleID, and VeRi-Wild) demonstrate that the proposed HPGN is superior to state-of-the-art vehicle re-identification approaches.