论文标题

信用风险模型中的超级应用行为模式:财务,统计和监管含义

Super-App Behavioral Patterns in Credit Risk Models: Financial, Statistical and Regulatory Implications

论文作者

Roa, Luisa, Correa-Bahnsen, Alejandro, Suarez, Gabriel, Cortés-Tejada, Fernando, Luque, María A., Bravo, Cristián

论文摘要

在本文中,我们介绍了源自基于应用程序的市场的替代数据与传统局数据相比,对信用评分模型的影响。这些替代数据来源表明自己在传统上被银行和金融机构服务的细分市场中预测借款人行为非常有力。我们在两个国家进行了验证的结果表明,这些新的数据来源对于预测低势力和年轻人的财务行为特别有用,这些人和年轻人也是最有可能与替代贷款人互动的。此外,使用Treeshap方法进行随机梯度增强解释,我们的结果还揭示了源自该应用程序的变量的有趣的非线性趋势,而传统银行通常无法使用。我们的结果代表了技术公司通过正确识别替代数据源并正确处理这些新信息来破坏传统银行业务的机会。同时,必须仔细验证替代数据,以克服各种司法管辖区的监管障碍。

In this paper we present the impact of alternative data that originates from an app-based marketplace, in contrast to traditional bureau data, upon credit scoring models. These alternative data sources have shown themselves to be immensely powerful in predicting borrower behavior in segments traditionally underserved by banks and financial institutions. Our results, validated across two countries, show that these new sources of data are particularly useful for predicting financial behavior in low-wealth and young individuals, who are also the most likely to engage with alternative lenders. Furthermore, using the TreeSHAP method for Stochastic Gradient Boosting interpretation, our results also revealed interesting non-linear trends in the variables originating from the app, which would not normally be available to traditional banks. Our results represent an opportunity for technology companies to disrupt traditional banking by correctly identifying alternative data sources and handling this new information properly. At the same time alternative data must be carefully validated to overcome regulatory hurdles across diverse jurisdictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源