论文标题

基于拉格朗日力学的物理知识神经网络建模系统动力学

Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics

论文作者

Roehrl, Manuel A., Runkler, Thomas A., Brandtstetter, Veronika, Tokic, Michel, Obermayer, Stefan

论文摘要

对各种技术系统的仿真和控制需要确定准确的动态模型。但是,在许多重要的现实应用程序中,两种主要建模方法通常无法满足要求:第一原理方法具有很高的偏见,而数据驱动的建模往往具有很大的差异。此外,纯粹基于数据的模型通常需要大量数据,并且通常难以解释。在本文中,我们提出了物理信息的神经普通微分方程(Pinode),这是一种混合模型,结合了两种建模技术来克服上述问题。这种新方法将源自拉格朗日力学的运动方程式直接纳入了深度神经网络结构。因此,我们可以在可用的地方整合先前的物理知识并使用函数近似 - e。 g。,神经网络 - 不是。该方法通过具有较大不确定性的现实世界物理系统的正向模型进行测试。最终的模型是准确且具有数据效率的,同时确保物理合理性。因此,我们演示了一种将物理洞察力与真实数据合并的方法。我们的发现对于基于模型的控制和机械系统的系统识别引起了人们的关注。

Identifying accurate dynamic models is required for the simulation and control of various technical systems. In many important real-world applications, however, the two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance. Additionally, purely data-based models often require large amounts of data and are often difficult to interpret. In this paper, we present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems. This new approach directly incorporates the equations of motion originating from the Lagrange Mechanics into a deep neural network structure. Thus, we can integrate prior physics knowledge where it is available and use function approximation--e. g., neural networks--where it is not. The method is tested with a forward model of a real-world physical system with large uncertainties. The resulting model is accurate and data-efficient while ensuring physical plausibility. With this, we demonstrate a method that beneficially merges physical insight with real data. Our findings are of interest for model-based control and system identification of mechanical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源