论文标题
具有各向异性粘度的二维随机Navier-Stokes方程的大偏差原理
Large deviation principle for the two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity
论文作者
论文摘要
在本文中,我们建立了具有各向异性粘度的二维随机纳维尔 - 长方形方程的大偏差原理,既适合较小的噪声,又在短时间内。大偏差原理的证明是基于弱收敛方法。在少量时间渐近学的情况下,我们使用指数等价来证明结果。
In this paper we establish the large deviation principle for the the two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity both for small noise and for short time. The proof for large deviation principle is based on the weak convergence approach. For small time asymptotics we use the exponential equivalence to prove the result.