论文标题
一个有限的P组家族满足卡尔森的猜想
A family of finite p-groups satisfying Carlson's conjecture
论文作者
论文摘要
令p> 3为素数,让r为1 <r <p-1的整数。对于每个r,此外,g_r表示最大类Pro-P组的独特商P^{r+1}。我们表明,G_R的Mod-P共同体学环具有深度,这反过来满足了卡尔森深度猜想的相等性[3]。
Let p>3 be a prime number and let r be an integer with 1<r<p-1. For each r, let moreover G_r denote the unique quotient of the maximal class pro-p group of size p^{r+1}. We show that the mod-p cohomology ring of G_r has depth one and that, in turn, it satisfies the equalities in Carlson's depth conjecture [3].