论文标题
在超低阻尼的抗fiferromagnetα-FE2O3的超低阻尼的单晶中,长距离自旋传输跨越了莫林相过渡到室温
Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3
论文作者
论文摘要
抗铁磁材料可以托管自旋波,其偏振范围从圆形到线性,具体取决于其磁动脉。据报道,据报道,据报道,据报道,具有圆极化自旋波的易于轴各向异性抗铁磁铁在长距离的长距离上携带自旋信息。在本文中,我们报告了赤铁矿的易于平面倾斜的抗铁磁相中的长距离自旋传输,在室温下,线性极化的木蛋白不会直观地预期携带自旋。我们证明,自旋传输信号通过易于轴连续降低到易于平面的摩尔蛋白转变,并在易于平面相中通过电流诱导的线性极化木蛋白对持续存在,在微米范围内具有倾斜长度。我们解释了低磁阻尼的长传输距离,我们的量度低于最佳铁磁体。所有这些共同表明,可以在各种各向异性和温度上实现长距离运输,直至室温,突出了这种绝缘抗铁磁体对基于磁蛋白的设备的有希望的潜力。
Antiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through current induced pairs of linearly polarized magnons with dephasing lengths in the micrometer range. We explain the long transport distance as a result of the low magnetic damping, which we measure to be below 0.0001 as in the best ferromagnets. All of this together demonstrates that long-distance transport can be achieved across a range of anisotropies and temperatures, up to room temperature, highlighting the promising potential of this insulating antiferromagnet for magnon-based devices.