论文标题

从多光谱数据中识别矿物的机器学习

Machine Learning for recognition of minerals from multispectral data

论文作者

Jahoda, Pavel, Drozdovskiy, Igor, Sauro, Francesco, Turchi, Leonardo, Payler, Samuel, Bessone, Loredana

论文摘要

机器学习(ML)在光谱法中发现了多个应用,包括用于识别矿物质和估计元素组成。在这项工作中,我们基于来自不同光谱方法的数据的组合介绍了自动矿物识别的新方法。我们评估了三种光谱方法的数据组合:振动拉曼散射,反射性可见性红外线(VNIR)和激光诱导的分解光谱(LIBS)。将这些方法与拉曼 + vnir,拉曼 + libs和vnir + libs配对,以及应用于每对的不同数据融合方法以对矿物进行分类。此处介绍的方法显示出大量使用单个数据源的优于大幅度的余量。此外,我们提出了一种从拉曼光谱中矿物质分类的深度学习算法,该算法优于先前的最新方法。我们的方法在各种开放访问实验性拉曼(Rruff)和VNIR(USGS,Relab,Ecostress)以及合成的LIBS NIST光谱库中进行了测试。我们的交叉验证测试表明,多方法光谱与ML配对,铺平了岩石和矿物质的快速,准确表征。

Machine Learning (ML) has found several applications in spectroscopy, including being used to recognise minerals and estimate elemental composition. In this work, we present novel methods for automatic mineral identification based on combining data from different spectroscopic methods. We evaluate combining data from three spectroscopic methods: vibrational Raman scattering, reflective Visible-Near Infrared (VNIR), and Laser-Induced Breakdown Spectroscopy (LIBS). These methods were paired into Raman + VNIR, Raman + LIBS and VNIR + LIBS, and different methods of data fusion applied to each pair to classify minerals. The methods presented here are shown to outperform the use of a single data source by a significant margin. Additionally, we present a Deep Learning algorithm for mineral classification from Raman spectra that outperforms previous state-of-the-art methods. Our approach was tested on various open access experimental Raman (RRUFF) and VNIR (USGS, Relab, ECOSTRESS), as well as synthetic LIBS NIST spectral libraries. Our cross-validation tests show that multi-method spectroscopy paired with ML paves the way towards rapid and accurate characterization of rocks and minerals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源