论文标题

Zalcman和gentrized Zalcman猜想$ \ Mathcal {u} $

Zalcman and generalized Zalcman conjecture for the class $\mathcal{U}$

论文作者

Obradović, Milutin, Tuneski, Nikola

论文摘要

函数$ f(z)= z+\ sum_ {n = 2}^{\ infty} a_n z^n $,在单位磁盘$ \ mathbb d = \ {z:| z | | <1如果是,并且只有当时,\ [\ left | \ left(\ frac {z} {f(z)} \ right)^2 -1 \ right | <1 \ quad \ quad \ quad(z \ in \ mathbb d)。 \]在本文中,我们证明了Zalcman和类$ \ Mathcal {U} $的Zalcman猜想以及猜想中的某些参数值。

Function $f(z)=z+\sum_{n=2}^{\infty} a_n z^n$, normalized, analytic and univalent in the unit disk $\mathbb D=\{z:|z|<1\}$, belongs to the class $\mathcal{U}$. if, and only if, \[ \left| \left(\frac{z}{f(z)}\right)^2 -1\right|<1 \quad\quad (z\in \mathbb D). \] In this paper, we prove the Zalcman and the generalized Zalcman conjecture for the class $\mathcal{U}$ and some values of parameters in the conjectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源