论文标题
非线性反应扩散介质上分子通信的分析模型
An Analytical Model for Molecular Communication over a Non-linear Reaction-Diffusion Medium
论文作者
论文摘要
基于扩散的分子通信的主要挑战之一是处理反应扩散化学方程的非线性。虽然数值方法可用于求解这些方程,但输入信号或介质参数的更改需要重做模拟。这使得设计调制方案很难,几乎不可能证明给定传输策略的最佳性。在本文中,我们提供了一种基于扰动方法的化学反应方程非线性的分析技术。扰动方法以无限功率序列表示解决方案。可以通过保持功率序列的主要术语来找到一个近似解决方案。如果模拟时间间隔或反应速率足够小,则显示近似解决方案可跟踪真实解决方案。还讨论了长时间间隔的近似解决方案。给出了一个说明性示例。在此示例中,结果表明,当反应速率(或总时间间隔)较低时,而不是使用连续的释放波形时,它对发射器在两个时间实例中释放分子是最佳的。
One of the main challenges in diffusion-based molecular communication is dealing with the non-linearity of reaction-diffusion chemical equations. While numerical methods can be used to solve these equations, a change in the input signals or the parameters of the medium requires one to redo the simulations. This makes it difficult to design modulation schemes and practically impossible to prove the optimality of a given transmission strategy. In this paper, we provide an analytical technique for modeling the non-linearity of chemical reaction equations based on the perturbation method. The perturbation method expresses the solution in terms of an infinite power series. An approximate solution can be found by keeping the leading terms of the power series. The approximate solution is shown to track the true solution if either the simulation time interval or the reaction rate is sufficiently small. Approximate solutions for long time intervals are also discussed. An illustrative example is given. For this example, it is shown that when the reaction rate (or the total time interval) is low, instead of using a continuous release waveform, it is optimal for the transmitters to release molecules at two time instances.