论文标题

来自时间序列数据的贝叶斯不确定性定量的MCMC

MCMC for Bayesian uncertainty quantification from time-series data

论文作者

Maybank, Philip, Peltzer, Patrick, Naumann, Uwe, Bojak, Ingo

论文摘要

科学和工程中的许多问题都需要不确定性量化,以解释观察到的数据。例如,在计算神经科学中,神经种群模型(NPM)是描述各种不同状态中脑生理的机械模型。在计算神经科学中,人们对从脑电图(脑电图)等记录中推断出NPM参数的反问题越来越兴趣。在该应用领域中,不确定性定量至关重要,以推断干预措施(例如麻醉)的机械作用。本文使用Markov Chain Monte Carlo(MCMC)向NPM的贝叶斯不确定性定量提供了C ++软件。现代MCMC方法需要后密度的一阶(在某些情况下更高阶)衍生物。提出的软件提供了两种不同的评估衍生品的方法:通过算法分化(AD)获得的有限差异和精确的衍生物。对于AD,使用了两种不同的实现:开源Stan数学库和由NAG(数值算法组)分发的商业许可的DCO/C ++工具。通过一个简单的示例,即噪声驱动的谐波振荡器,在MCMC采样中使用衍生信息。并比较了计算衍生物的不同方法。该软件以模块化对象的方式编写,以便将其扩展到基于衍生的MCMC的其他科学域。

Many problems in science and engineering require uncertainty quantification that accounts for observed data. For example, in computational neuroscience, Neural Population Models (NPMs) are mechanistic models that describe brain physiology in a range of different states. Within computational neuroscience there is growing interest in the inverse problem of inferring NPM parameters from recordings such as the EEG (Electroencephalogram). Uncertainty quantification is essential in this application area in order to infer the mechanistic effect of interventions such as anaesthesia. This paper presents C++ software for Bayesian uncertainty quantification in the parameters of NPMs from approximately stationary data using Markov Chain Monte Carlo (MCMC). Modern MCMC methods require first order (and in some cases higher order) derivatives of the posterior density. The software presented offers two distinct methods of evaluating derivatives: finite differences and exact derivatives obtained through Algorithmic Differentiation (AD). For AD, two different implementations are used: the open source Stan Math Library and the commercially licenced dco/c++ tool distributed by NAG (Numerical Algorithms Group). The use of derivative information in MCMC sampling is demonstrated through a simple example, the noise-driven harmonic oscillator. And different methods for computing derivatives are compared. The software is written in a modular object-oriented way such that it can be extended to derivative based MCMC for other scientific domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源