论文标题
石墨烯键$ _3 $用于选择性极性蒸气在室温下的异质结
Graphene-TiS$_3$ heterojunction for selective polar vapor sensing at room temperature
论文作者
论文摘要
在这项工作中,研究了室温(2D)(2D)杂结石墨烯-TIS3材料和Tis3纳米骨的室温极性蒸气传感行为。通过化学蒸气传输(CVT)合成TIS3纳米纤维,并通过扫描电子显微镜(SEM),高分辨率透射电子显微镜(HRTEM),能量分散性X-射线光谱谱(EDS),X射线衍射(XRD),Raman Spectroscoppy和Frtrared Spectrir(FTRREADS SPECTRIR)研究了它们的结构。通过观察到的电子行为变化评估了TIS3纳米容器的气体传感性能。用金触点和2D异质结的GR-TIS3-GR结构中的光刻触点和图案图案的石墨烯(GR)电极制造感应设备。可以观察到,金色接触的Tis3设备具有相当线性的I-V行为,而GR-TIS3-GR异质结则与较高的Schottky Barrier(250 MEV)接触。在室温下记录了传感器的I-V响应,相对湿度为55%,并且对于不同的乙醇蒸气浓度(从2到20 ppm不等)。 I-V图表明,通过水和乙醇分子的吸附具有相对较高的感应反应(2 ppm时约3353%),GR-TIS3-GR的耐药性增加。我们的结果表明,可以在室温下分别实现对低浓度乙醇蒸气(2 ppm)的选择性和稳定的反应,分别瞬态响应和恢复时间约为6 s和40 s。我们提出的设计展示了一种新的方法,使用分析蒸气和2D材料的异质结之间的极性相互作用进行选择性分子识别。
In this work, the room temperature polar vapor sensing behavior of two dimentional (2D) heterojunction Graphene-TiS3 materials and TiS3 nanoribbons is investigated. TiS3 nanoribbons were synthesized via chemical vapor transport (CVT) and their structure was investigated by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X- ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) analysis. The gas sensing performance of the TiS3 nanoribbons was assessed through the observed changes in their electronic behavior. Sensing devices were fabricated with gold contacts and with lithographically patterned graphene (Gr) electrodes in a 2D heterojunction Gr-TiS3-Gr architecture.. It is observed that the gold contacted TiS3 device has a rather linear I-V behavior while the Gr-TiS3-Gr heterojunction forms a contact with a higher Schottky barrier (250 meV). I-V responses of the sensors were recorded at room temperature with a relative humidity of 55% and for different ethanol vapor concentrations (varying from 2 to 20 ppm). I-V plots indicated an increase in the resistance of Gr-TiS3-Gr by the adsorption of water and ethanol molecules with relatively high sensing response (~3353% at 2 ppm). Our results reveal that selective and stable responses to a low concentration of ethanol vapor (2 ppm) can be achieved at room temperature with transient response and recovery times of around 6 s and 40 s, respectively. Our proposed design demonstrate a new approach for selective molecular recognition using polar interactions between analyte vapors and heterojunctions of 2D-materials.