论文标题
当地操作员的纠缠和蝴蝶效应
Entanglement of Local Operators and the Butterfly Effect
论文作者
论文摘要
我们研究量子和经典信息对当地操作员插入实施的扰动的鲁棒性。我们通过计算海森伯格图片中当地运营商希尔伯特空间中的多方纠缠措施来做到这一点。对我们探索的初始条件的敏感性是量子多体系统中蝴蝶效应的显着表现。我们在HAAR随机统一回路中得出了一种“膜理论”,以计算相互信息,对数消极情绪以及在本地操作员状态中反映的熵,通过映射到经典的统计力学问题,并发现任何本地操作员插入任何地方插入信息可以尽可能快地插入信息。对于允许全息偶的二元组的保形场理论发现了相同的行为,在这种情况下,永恒的黑洞描述了整体几何形状,其局部物体位于地平线。与这些最大的拼车相反,只有$ o(1)$ $的信息被当地运营商在可集成系统(例如免费费米斯和克利福德电路)中被拆除。
We study the robustness of quantum and classical information to perturbations implemented by local operator insertions. We do this by computing multipartite entanglement measures in the Hilbert space of local operators in the Heisenberg picture. The sensitivity to initial conditions that we explore is an illuminating manifestation of the butterfly effect in quantum many-body systems. We derive a "membrane theory" in Haar random unitary circuits to compute the mutual information, logarithmic negativity, and reflected entropy in the local operator state by mapping to a classical statistical mechanics problem and find that any local operator insertion delocalizes information as fast as is allowed by causality. Identical behavior is found for conformal field theories admitting holographic duals where the bulk geometry is described by the eternal black hole with a local object situated at the horizon. In contrast to these maximal scramblers, only an $O(1)$ amount of information is found to be delocalized by local operators in integrable systems such as free fermions and Clifford circuits.