论文标题

关键Erdős-rényi图的离域转变

Delocalization transition for critical Erdős-Rényi graphs

论文作者

Alt, Johannes, Ducatez, Raphael, Knowles, Antti

论文摘要

我们分析了关键的erdős-rényi图$ \ mathbb g(n,d/n)$的邻接矩阵的特征向量,其中$ d $是订单$ \ log n $。我们表明,其频谱分为两个阶段:在频谱中间的一个离域相,在该频谱中间,特征向量被完全取代,在光谱边缘附近的半定位相位,在该频谱边缘,特征向量基本上是在少量的顶点上定位的。在半定位的相中,特征向量的质量集中在围绕谐振顶点的少数不相交球中,在每个谐音的顶点中,它都是径向指数衰减的函数。各个阶段之间的过渡很清晰,并且以eigenVector $ \ mathbf w $的定位指数$γ(\ mathbf w)的不连续性表现出来,这是通过$ \ | \ | \ mathbf w \ | _ _ \ | _ \ | _ \ | \ | \ |我们的结果在整个最佳制度$ \ sqrt {\ log n} \ ll d \ leq o(\ log n)$中保持有效。

We analyse the eigenvectors of the adjacency matrix of a critical Erdős-Rényi graph $\mathbb G(N,d/N)$, where $d$ is of order $\log N$. We show that its spectrum splits into two phases: a delocalized phase in the middle of the spectrum, where the eigenvectors are completely delocalized, and a semilocalized phase near the edges of the spectrum, where the eigenvectors are essentially localized on a small number of vertices. In the semilocalized phase the mass of an eigenvector is concentrated in a small number of disjoint balls centred around resonant vertices, in each of which it is a radial exponentially decaying function. The transition between the phases is sharp and is manifested in a discontinuity in the localization exponent $γ(\mathbf w)$ of an eigenvector $\mathbf w$, defined through $\|\mathbf w\|_\infty / \|\mathbf w\|_2 = N^{-γ(\mathbf w)}$. Our results remain valid throughout the optimal regime $\sqrt{\log N} \ll d \leq O(\log N)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源