论文标题

Qeba:基于边界的Blackbox攻击

QEBA: Query-Efficient Boundary-Based Blackbox Attack

论文作者

Li, Huichen, Xu, Xiaojun, Zhang, Xiaolu, Yang, Shuang, Li, Bo

论文摘要

机器学习(ML),尤其是深神经网络(DNN)已广泛用于各种应用程序,包括几个安全关键的应用程序(例如自主驾驶)。结果,有关对抗性例子的最新研究引起了极大的关注。可以通过在输入中添加少量扰动来实现这种对抗性攻击,以误导模型预测。虽然几次白盒攻击表明了它们的有效性,但假设攻击者可以完全访问机器学习模型。在实践中,黑盒攻击更为现实。在本文中,我们仅根据模型的最终预测标签提出了一个基于查询的基于边界的黑框攻击(​​QEBA)。从理论上讲,我们显示了为什么先前基于边界的攻击对整个梯度空间的梯度估计在查询数方面不高,并且为我们的基于尺寸降低的梯度估计提供了最佳分析。另一方面,我们对ImageNet和Celeba数据集进行了广泛的实验,以评估Qeba。我们表明,与最新的黑盒攻击相比,Qeba能够使用较少的查询来获得较低的扰动幅度,并具有100%的攻击成功率。我们还展示了对现实世界中API的攻击案例研究,包括Megvii Face ++和Microsoft Azure。

Machine learning (ML), especially deep neural networks (DNNs) have been widely used in various applications, including several safety-critical ones (e.g. autonomous driving). As a result, recent research about adversarial examples has raised great concerns. Such adversarial attacks can be achieved by adding a small magnitude of perturbation to the input to mislead model prediction. While several whitebox attacks have demonstrated their effectiveness, which assume that the attackers have full access to the machine learning models; blackbox attacks are more realistic in practice. In this paper, we propose a Query-Efficient Boundary-based blackbox Attack (QEBA) based only on model's final prediction labels. We theoretically show why previous boundary-based attack with gradient estimation on the whole gradient space is not efficient in terms of query numbers, and provide optimality analysis for our dimension reduction-based gradient estimation. On the other hand, we conducted extensive experiments on ImageNet and CelebA datasets to evaluate QEBA. We show that compared with the state-of-the-art blackbox attacks, QEBA is able to use a smaller number of queries to achieve a lower magnitude of perturbation with 100% attack success rate. We also show case studies of attacks on real-world APIs including MEGVII Face++ and Microsoft Azure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源