论文标题

低规律性的非$ l^2(r^n)$ gmhd-alpha系统的本地解决方案

Low regularity of non-$L^2(R^n)$ local solutions to gMHD-alpha systems

论文作者

Riva, Lorenzo, Pennington, Nathan

论文摘要

方程式的磁液动力学(MHD)系统控制粘性流体受磁场的影响,并通过Navier-Stokes方程和Maxwell方程的耦合得出。最近,研究基于流体的微分方程的概括已成为常见。在这里,我们考虑了广义的磁性流动力α(GMHD- $α$)系统,该系统与原始MHD系统不同,它通过包括附加的非线性术语(由$α$索引),并用更通用的傅立叶型乘数替换了Laplace运营商,由$ - | exc./ g(|)$ - | exg(| | | | | | | | | | | | |)在Pennington的论文中,在Sobolev Space $ H^{s,2}(\ Mathbb {r}^n)$的初始数据中考虑了问题。在这里,我们考虑了$ h^{s,p}中的初始数据的问题(\ mathbb {r}^n)$,$ n \ geq 3 $和$ p> 2 $。我们的目标是最大程度地减少获得解决方案独特性所需的规律性。

The Magneto-Hydrodynamic (MHD) system of equations governs viscous fluids subject to a magnetic field and is derived via a coupling of the Navier-Stokes equations and Maxwell's equations. Recently it has become common to study generalizations of fluids-based differential equations. Here we consider the generalized Magneto-Hydrodynamic alpha (gMHD-$α$) system, which differs from the original MHD system by including an additional non-linear terms (indexed by $α$), and replacing the Laplace operators by more general Fourier multipliers with symbols of the form $-|ξ|^γ/ g(|ξ|)$. In a paper by Pennington, the problem was considered with initial data in the Sobolev space $H^{s,2}(\mathbb{R}^n)$ with $n \geq 3$. Here we consider the problem with initial data in $H^{s,p}(\mathbb{R}^n)$ with $n \geq 3$ and $p > 2$. Our goal is to minimize the regularity required for obtaining uniqueness of a solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源