论文标题
对数晶格上的流体动力学
Fluid dynamics on logarithmic lattices
论文作者
论文摘要
流体动力学中的开放问题,例如存在有限的奇异性(爆炸),发达的湍流中间歇性的解释等于多尺度结构和基础运动方程的对称性。传统上,在这种复杂系统的分析中使用了显着简化的运动方程,称为玩具模型。在这样的模型中,将方程式修改仅保存仅保留该结构很重要的一部分。在这里,我们提出了一种构建简化模型的不同方法,在这种模型中,而不是简化方程式引入简化的配置空间:速度字段是在具有适当代数操作和计算的多维对数晶格上定义的。然后,运动方程保持其确切的原始形式,因此自然保持原始系统的大多数缩放属性,对称性和不变性。这种模型的分类揭示了与著名的数学常数(例如黄金平均值和塑料数量)的迷人关系。使用严格和数值分析,我们在这些模型中描述了解决方案的各种特性,从存在的基本概念和唯一性到爆炸开发和动力动力学。特别是,我们观察到三维不可压缩的Euler方程中混沌爆炸场景的强大鲁棒性,以及类似于完整的三维Navier-Stokes System发达的湍流的傅立叶模式统计。
Open problems in fluid dynamics, such as the existence of finite-time singularities (blowup), explanation of intermittency in developed turbulence, etc., are related to multi-scale structure and symmetries of underlying equations of motion. Significantly simplified equations of motion, called toy-models, are traditionally employed in the analysis of such complex systems. In such models, equations are modified preserving just a part of the structure believed to be important. Here we propose a different approach for constructing simplified models, in which instead of simplifying equations one introduces a simplified configuration space: velocity fields are defined on multi-dimensional logarithmic lattices with proper algebraic operations and calculus. Then, the equations of motion retain their exact original form and, therefore, naturally maintain most scaling properties, symmetries and invariants of the original systems. Classification of such models reveals a fascinating relation with renowned mathematical constants such as the golden mean and the plastic number. Using both rigorous and numerical analysis, we describe various properties of solutions in these models, from the basic concepts of existence and uniqueness to the blowup development and turbulent dynamics. In particular, we observe strong robustness of the chaotic blowup scenario in the three-dimensional incompressible Euler equations, as well as the Fourier mode statistics of developed turbulence resembling the full three-dimensional Navier-Stokes system.