论文标题

光滑的del pezzo log calabi-yau对的热带对应关系

Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs

论文作者

Graefnitz, Tim

论文摘要

考虑一对log calabi-yau对$(x,d)$,由光滑的del pezzo表面$ x $ a $ \ geq 3 $和光滑的抗态分隔$ D $组成。我们证明了零元的Gromov-witten属属$ x $与单点相交的$ d $与最大切线相交的对应关系与从GROSS-SIEBERT SIEBERT RENSPRATION ALGORITHM中出现的最大墙壁结构与最大切线相交的$ D $。更确切地说,在一致的壁结构中附着在无限壁上的函数乘积的对数为这些不变性提供了生成函数。

Consider a log Calabi-Yau pair $(X,D)$ consisting of a smooth del Pezzo surface $X$ of degree $\geq 3$ and a smooth anticanonical divisor $D$. We prove a correspondence between genus zero logarithmic Gromov-Witten invariants of $X$ intersecting $D$ in a single point with maximal tangency and the consistent wall structure appearing in the dual intersection complex of $(X,D)$ from the Gross-Siebert reconstruction algorithm. More precisely, the logarithm of the product of functions attached to unbounded walls in the consistent wall structure gives a generating function for these invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源