论文标题

基于深度学习的管道,用于错误检测和大脑MRI分割结果的质量控制

A deep learning-based pipeline for error detection and quality control of brain MRI segmentation results

论文作者

Brusini, Irene, Padilla, Daniel Ferreira, Barroso, José, Skoog, Ingmar, Smedby, Örjan, Westman, Eric, Wang, Chunliang

论文摘要

大脑MRI分割结果应始终进行质量控制(QC)过程,因为自动分割工具可能容易出错。在这项工作中,我们提出了两种基于深度学习的体系结构,以自动执行QC。首先,我们使用生成的对抗网络来创建错误图,以突出显示分割错误的位置。随后,实施了3D卷积神经网络以预测细分质量。目前的管道已显示出有希望的结果,尤其是在这两个任务中都高灵敏度。

Brain MRI segmentation results should always undergo a quality control (QC) process, since automatic segmentation tools can be prone to errors. In this work, we propose two deep learning-based architectures for performing QC automatically. First, we used generative adversarial networks for creating error maps that highlight the locations of segmentation errors. Subsequently, a 3D convolutional neural network was implemented to predict segmentation quality. The present pipeline was shown to achieve promising results and, in particular, high sensitivity in both tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源